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The derivative-based analysis for detecting regions of the validity of the Vogel-Fulcher-Tammann �VFT�
dependence for superpressed and supercooled liquids is discussed. For the temperature �T� path the analysis
introduced by Stickel et al. �J. Chem. Phys. 104, 2043 �1996�; 107, 1086 �1997�� is recalled. For the pressure
�P� path the derivation based on the counterpart of the VFT dependence proposed in Paluch et al. �J. Phys.:
Condens. Mater 10, 4131 �1998�� is presented. The appearance of two ideal glass temperatures �T0� or
pressures �P0�, fragility strength coefficients �DT ,DP�, and prefactors ��0

T ,�0
P� for VFT equations in following

dynamical domains, i.e., high-temperature ��Thigh� and low-temperature ��Tlow� or low-pressure ��Plow� and
high-pressure ��Phigh�, is stressed. It is noteworthy that the values of T0��Thigh��T0��Tlow� ,DT��Thigh�
�DT��Tlow�, and �0

T��Thigh���0
T��Tlow�. Analogous behavior was noted for isothermal �PL and �PH dy-

namic domains. A similar derivative-based approach is also applied to test the validity of the mode coupling
theory �MCT� critical-like equation ��T�� �T−TX�−g. It yields the temperature TX and the MCT power �“criti-
cal”� exponent g exclusively from the simple linear regression. The extension of such an analysis for the
pressure path is also given. The hardly discussed question of the error of estimations of g and TX is empha-
sized. The relation between the derivative based behavior mentioned above and the apparent activation en-
thalpy �temperature path� or the apparent activation volume �pressure path� is indicated. The presented analysis
was applied to discuss the dynamic crossovers in supercooled and superpressed diethyl phthalate, based on
experimental data supplemented by those given in Pawlus et al. �Phys. Rev. E 68, 021503 �2003��.
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I. INTRODUCTION

One of the important concepts added to the physics
of glassy liquids within the last decade is the qualitative
change of dynamics above glass transition �1–42�.
It was noted that on passing the dynamic crossover
temperature TB, located well above the glass temperature
Tg, a set of phenomena occurs. For instance �i� the
change in the Vogel-Fulcher-Tammann �VFT� rela-
tion �1–5,7,10,11,14,17,18,25–33,37,39,40�, �ii� the split
of the secondary relaxation from the primary � relax-
ation �1,3–5,23,27,28,35,37,41�, �iii� decoupling
of DC-conductivity from the �-relaxation time
�1–5,13,17,18,21,24,29,30�, �iv� decoupling between rota-
tional and translational diffusion �1,3,5,8,9,13,20,24�, and �v�
the emerging universality of the relaxation time at the cross-
over, namely, ��TB��10−7 s �3–5,31,36,39–41�.

For detecting TB temperature Stickel et al. �10,11� pro-
posed the derivative analysis of experimental data followed
by the linearized plot �T��1/T�= �−d log � /d�1/T��−1/2 vs
1 /T. For such a plot the Arrhenius domain is manifested as a
constant function �a nonsloped line� and the VFT domain as
the sloped line �11�.

Recently, Casalini et al. �28� extended the above analysis
to detect crossovers between dynamical regimes for isother-
mal, pressure dependences of dynamic properties. They
claimed �28� “Since the pressure dependence of � can be
described by a similar equation, with T replaced by inverse
pressure, an analogous derivative function for pressure data
is �P� = �d log10 � /dP�−1/2.” Next, basing on the plot �P��P�, as
the natural extension of the �T��1/T� plot, they identified

VFT based dynamic domains as regions of validity of the
pressure-related linear behavior of transformed experimental
data for an impressive set of vitrifying liquids ��28� and next
in Refs. �30,35–39��.

It is noteworthy that intersections of straight lines repre-
senting different dynamic domains in the above analysis con-
stituted the basic tool for determining crossover temperatures
TB �3,4,10,11,17,18,25–30,33,37� and pressures PB
�28–30,35–39�. The emerging universality of the dielectric
relaxation time and the viscosity at the crossover, namely,
��TB , PB��10−7 s �5,31,35,39,40� stress the significance of
the above analysis.

The VFT based derivation of the above distortion-
sensitive transformation of experimental data has been
clearly shown for the temperature evolution of dynamic
properties �27–29,33–37�. To the best of the authors knowl-
edge, no such derivation for the pressure path has been pro-
posed so far, including the mentioned Refs. �28–30,35–40�.

This paper presents the comprehensive description of the
derivative-based linearized transformation of temperature
and pressure dependences of relaxation time on approaching
the glass transition. The VFT based temperature paths analy-
sis recalls results of Refs. �2,4,10,11�. This created the back-
ground for discussing the isothermal, pressure behavior
which starts with the pressure counterpart of the VFT equa-
tion introduced in Ref. �14�. The omitted absolute of the
consequent appearance of two qualitatively different ideal
glass temperatures or pressures and fragility strength coeffi-
cient prefactors is emphasized. Further, the application of the
derivative-based analysis of data with the linear function out-
put for the solely two-parameter fitting of the basic mode-
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coupling theory �MCT� critical-like dependence �1,3� for
both T and P paths is shown. The relationship between the
discussed derivative-based behavior and the evolution of the
apparent activation energy or the apparent activation volume
for both paths is raised.

Results above are applied to test the dynamical regimes in
supercooled and superpressed diethyl phthalate, based on ex-
perimental data and those given in Ref. �30�.

II. EXPERIMENT

The analysis presented in this paper is applied for discuss-
ing temperature and pressure evolution of the primary dielec-
tric relaxation time in diethyl phthalate �DEP�, for which the
glass temperature Tg=179 K and the fragility taken as the
steepness index mTg

=69 are declared �3,30,40�. The analysis
is based on data from Ref. �30� supplemented by measure-
ments aimed at the extension of the range of tested tempera-
tures and pressures, namely for �i� T�300 K �P=0.1 MPa
isobar� and �ii� P	300 MPa �T=293 K isotherm�. Measure-
ments were carried out using the experimental setup applied
in the authors earlier studies �35,42�; the Novocontrol BDS
80 impedance analyzer �0.01 Hz–1 GHz� with Quattro tem-
perature unit �±0.1 K� and the high pressure setup for linear
and nonlinear dielectric studies. The limitation of dielectric
measurements to frequencies f 	3 MHz is one of the still
unsolved experimental problems and is still an unsolved ba-
sic problem of dielectric pressure studies. Hence, loss curves
for higher temperatures matched with lower pressures are
often outside the “experimental window.” To overcome this
problem, values of relaxation times can be estimated from
the behavior of DC conductivity �30�. In this way the men-
tioned additional values of dielectric times were obtained.
Data were analyzed using ORIGIN 7.0 software. All errors are
given as three standard deviations. This paper focuses only
on the temperature or pressure evolution of relaxation time in
DEP. The distribution of dielectric relaxation times, the ap-
pearance of the secondary relaxation, and the breaking of the
�DSE� law is presented in Ref. �30�. The analyzed experi-
mental data are shown in Figs. 1 and 2 for the temperature
and pressure paths, respectively. They also include results of
the VFT based analysis for following dynamical domains as
discussed below.

III. RESULTS AND DISCUSSION

The VFT dependence constitutes one of the basic tools for
portraying the non-Arrhenius temperature dependence of di-
electric relaxation time �3�

��T� = �0
T exp� C

T − T0
� = �0

T exp� DTT0

T − T0
� , �1�

where T0 is related to the hypothetical, extrapolated, ideal
glass transition and the value of the strength parameter DT
describes the fragility strength coefficient. For the prefactor
usually �0=10−14±2 s is declared �1–5�.

However, the temperature dependence of the primary re-
laxation in glass-forming liquids can also be portrayed by the
Arrhenius-like dependence with the apparent, temperature-

dependent, activation energy Ea�T�, namely �3,4�,

��T� = �0
T exp�Ea�T�

RT
	 . �2�

For the case of the simple Arrhenius behavior Ea�T�=const.
Recalling next the first law of thermodynamics and apply-

ing the resulting differential relation for the apparent activa-
tion behavior one can obtain dEa=TdS+VadP �Va denotes
the activation volume, P is for pressure, and S for entropy�

FIG. 1. Dielectric relaxation time in supercooled diethyl phtha-
late as a function of temperature presented in the form of the
Arrhenius plot showing regions of the validity of the simple linear
dependence as a linear function. The solid and the dashed curves
are portrayed by VFT dependences with DT=2.2, T0=188 K, which
resulted in �0

T�4.7
10−12 s for �Thigh domain and DT�32,T0

�111 K, and �0
T=7
10−22 s for �Tlow domain.

FIG. 2. Dielectric relaxation time in superpressed diethyl phtha-
late as a function of pressure presented in the form of the Arrhenius
plot showing regions of the validity of the simple linear dependence
as a linear function. The solid curve portrays the VFT dependence
��Plow� and the dashed line is for the Arrhenius description
��Phigh�.
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�43,44� which for P=const yields dHa /d�1/T�
=TdS /d�1/T�, one can obtain for the ln � vs 1/T derivative
of relation �2�:

d ln ��T�
d�1/T�

=
d�Ea�T�/RT�

d�1/T�

=
d
�Ha�T� − TS�T��/RT�

d�1/T�

=
Ha�T�

R
+

1

R
�dHa�T�

d�1/T�
− T

dS�T�
d�1/T�� =

Ha�T�
R

.

�3a�

Combining this with the analogous derivative of the VFT
relation �1� one can obtain

Ha��T� =
Ha�T�

R
=

d ln �

d�1/T�
= DTT0� T

T − T0
	2

. �3b�

The most common measure of fragility is the steepness index
at Tg, namely �3,7�,

m = mTg
= �d log10 �

d�Tg/T� �T=Tg

. �4�

Taking T=Tg in last term of relation �3� and multiplying both
sides of this relation by 1/Tg one can obtain

Ha��Tg�
Tg

=
Ha�Tg�

RTg
=

mTg

log10 e

= � d ln �

d�Tg/T��T=Tg

=
DTT0Tg

�Tg − T0�2

=
DT�T0/Tg�

�1 + To/Tg�2 . �5�

The last term in Eq. �5� is the same as the one derived for
fragility m in Ref. �15�. Following relations �4� and �5� the
evolution of the activation enthalpy is reflected by the
changes of the steepness index m�T�=mT, namely,

d ln �

d�1/T�
= Ha��T� =

TmT

log10 e
. �6�

The plot of �d ln � /d�1/T��−1/2 vs 1 /T should yield a linear
dependence in the region of the validity of the VFT equation,
namely

� d ln �

d�1/T��−1/2

= �Ha��1/T��−1/2

= � TmT

log10 e
	−1/2

= ��DTTo�−1/2� −
�T0�DTT0�−1/2�

T
= A −

B

T
.

�7�

This yields T0= �B /A� and DT=1/ �AB� for the VFT domain
and the nonsloped dependence for the Arrhenius region.

The above analysis recalls the derivative-based transfor-
mation of experimental data introduced in Refs. �2,4,10,11�,
stressing its relation with the evolution of the apparent acti-
vation energy and the steepness index. Such analysis, first
proposed by Stickel et al. in the 1980s �11�, applies log10 �
instead of ln �, which introduces the log10 e multiplicator. To
avoid this factor the natural logarithm is used in this paper.

For discussing the isothermal pressure behavior of the di-
electric relaxation time we recall the pressure analog of the
VFT relation �1�, first proposed in Ref. �14�

��P� = �0
P exp� DPP

P0 − P
�, T = const, �8�

where Dp is the pressure related fragility strength coefficient
and P0 is the extrapolated pressure for the ideal glass transi-
tion at given temperature T=const.

For very high P0 values, i.e., strong glassformers, the con-
dition P� P0 is always fulfilled for experimentally acces-
sible values of pressures. It reduces the above equation to the
Arrhenius case, ��P�=�0

P exp�VaP /R� where Va is the con-
stant activation volume. If the value of P0 is relatively small,
relation �8� is reduced to ��P�=�0

P exp�const/ �P0− P��, en-
abling the portraying of ��P� behavior for very fragile glass-
forming liquids �44�. However, there is a strong difference
regarding prefactors �0

T and �0
P in relations �1� and �8�. For

the pressure-related case �relation �8�� �0
P can be taken from

��T� measurements under atmospheric pressure and therefore
�0

P��0
T.

The pressure dependence of the primary relaxation time in
glassforming liquids can also be portrayed by the Arrhenius-
like dependence but with the apparent, pressure-dependent,
activation volume Va�T�, namely �3�,

��P� = �0
P exp�PVa�P�

RT
�, T = const. �9�

Hence, the derivative d ln ��P� /dP yields the “normalized”
apparent activation volume Va�=Va /RT, where T=const is
the isotherm temperature. Relating this to the derivative of
the pressure analog of the VFT dependence �PVFT relation�
one can obtain

Va��P� =
d ln �

dP
=

DPP0

�P0 − P�2 , T = const. �10�

Recalling the pressure-related definition of the steepness in-
dex �22�

mPg
= � d ln �

dP/Pg
�

P=Pg

�11�

and next substituting P= Pg in last term of relation �11� and
finally multiplying both sides of this equation by Pg one can
obtain
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PgVa� =
Va�Pg�

RTg
=

mPg

log10 e
=

DPP0

�P0 − Pg�2 =
DPg/P0

�1 −
Pg

P0
	2 .

�12�

The last term in the above relation is the same as the one
obtained for mPg

in Ref. �22�. Following relation �10� the
plot d ln � /dP vs P should yield a linear dependence in the
region of validity of the VFT-like relation �8�, namely,

�d ln �

dP
� = �Va��

−1/2 = �DPP0�−1/2P0 − �DPP0�−1/2P = A + BP .

�13�

This enables the estimation of parameters in relation �8�:
P0=A /B and DP=1/AB. Hence, the plot �P=d�ln �� /d�P�
proposed by Casalini et al. �28� shows the underlying linear
evolution of the reduced apparent activation volume Va /RT
or the steepness index related quantity mP / P log10 e.

The distortion-sensitive, derivative analysis can also be
applied to test the validity of the MCT critical-like behavior
on approaching the ergodic—nonergodic crossover tempera-
ture TX= �1.3±0.1�Tg �1,3,6�, namely,

��T� = �0
T−MCT�T − TX

TX
	−g

. �14�

In Refs. �1,3,4,6� the symbol “�” is used for the MCT “criti-
cal” exponent in relation �14�. However, such a symbol has
already been reserved for the critical exponent of compress-
ibility �43,45�. The notation applied in relation �14� avoids
the consequent confusion possible for some glassy systems
�33,42�.

Our survey of reference experimental data for various
supercooled liquids suggests that �0

T−MCT=��T=2TX�
=10−10±1 s �3,4,6,12,16,42�. In practice, experimental data
are portrayed by the above relation for T−TX�15 K.

To test the validity of relation �14� the plot ���T��−1/g vs T
is most frequently referred to �3,4,6,12,19�. Recently, an
analysis analogous to the one applied in the case of critical
phenomena �42,45�, based on the ln���T�� vs ln�T−TX� plot,
was also used �40�. Both procedures involve one “hidden,”
adjustable parameter, namely, exponent g or temperature TX,
followed by linear regression. However, the question of the
reliability of such an analysis arises. In this respect the so-
called pseudospinodal analysis is worth recalling �45–47�. It
was introduced for the estimation of the position of the spin-
odal curve in binary mixtures of limited miscibility basing on
measurements in the stable, high temperature �homogeneous�
phase. Specific heat �45�, light scattering �46�, and nonlinear
dielectric effect �47� dependences were analyzed by equa-
tions resembling relation �14� but with TX=Tspinodal, for T
�Tbinodal=Tspinodal+�T. Even if the discontinuity was very
small ��T�1� the experimental errors for the estimated
Tspinodal and the critical exponents were considerably high
�45–47�. This clearly suggests that for supercooled liquids,
where the “discontinuity” �T�15 K, the estimation error of
g and TX parameters is obviously high, although usually
avoided ��2–4,6,12,16,42� and references therein�.

Combining relation �2� for the Arrhenius-like dependence
with the apparent activation enthalpy and the MCT critical-
like relation �14� one can obtain

Ha��T� =
Ha�T�

R
= R� d ln �

d�1/T�	 =
gT2

T − TX
. �15�

Hence, T2 /Ha��T�=T2 / 
d�ln ��T�� /d�1/T��=A+BT plot
yields a linear dependence in the region of the validity of the
MCT critical-like description. Thus the simple linear regres-
sion, without any “hidden,” adjustable coefficients gives the
desired parameters, namely, TX= �A /B� and g= �B−1�. In our
opinion the distortion-sensitive characteristic of the deriva-
tive analysis and the simplification mentioned above also
yields the true error of TX and g estimations.

In the case of critical phenomena temperature and pres-
sure are isomorphic variables, i.e., isomorphic relations with
the same universal critical exponents describe the behavior
of given physical magnitudes both as a function of tempera-
ture and pressure �45�. Hence, the question arises whether
the critical-like behavior predicted by the MCT for the tem-
perature behavior may occur for the pressure paths in glassy
liquids, namely,

��P� = �0
P−MCT�PX − P

PX
	−g�

. �16�

Combining relations �8� and �16� and applying the derivative
analysis one can obtain

�d ln ��P�
dP

�−1

= � Va

RT
	

T=const

−1

= �Va��
−1 = g�−1PX − g�−1P = A − BP .

�17�

Therefore, one may estimate g=B−1 and PX=A /B in relation
�16� from a simple linear regression, without any “hidden,”
additional parameters.

The application of the above analysis for supercooled and
superpressed diethylphthalate �DEP� is presented in Figs. 3
and 4. Figure 3 shows the VFT-based �Ha��

−1/2 vs 1 /T plot,
which is the clear analog of the Stickel et al. plot �2,4,10,11�.
Despite the extension of the range of temperatures the dy-
namic crossover TB�230 K is approximately the same as in
Ref. �30�. However, we would like to clarify the factor
hardly discussed so far, namely, the fact that each of the
following dynamical domains is described by a different set
of parameters �DT ,T0 ,�0� or �Dp , P0 ,�0

P�. For instance from
the temperature test in DEP we obtained DT�2.4, T0
�184 K, and �0

T�4.7
10−12 s for T�TB and DT�30, T0
�111 K and �0

T=7
10−22 s for T	TB. Hence, the value of
T0�130 K given in Refs. �30,40� can be considered as the
average of the above values, depending on the range of tem-
peratures applied for the VFT-based estimation. The obtained
in Fig. 3 values of the fragility strength coefficient DT show
that on passing TB the crossover from a fragile to a less
fragile �stronger� glass former occurs, associated with the
decrease of the fictitious temperature T0. Analogous behavior
occurs for the pressure path, as shown in Fig. 4.
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The inset in Fig. 3 presents T2�Ha��TX��−1 vs T plot of the
same data. In this case the region of the validity of the MCT
critical-like dependence �15� is manifested as a straight line.

It is noteworthy that TX can be determined from condition
T2�Ha��TX��−1=0, based solely on simple extrapolation of the
linear dependence, without any additional “hidden” adjust-
able parameters. This also enables an unequivocal estimation
of errors of basic parameters in relation �15�, namely, ±10 K
for TX and ±0.2 for g.

Figure 4 presents �Va��
−1/2 vs P plot based on the deriva-

tive analysis of the isothermal �T=293 K�, pressure evolu-
tion of the dielectric relaxation time. As stated above it is
equivalent to the Casalini et al. �28� transformation of dielec-
tric relaxation time data �P��P�. The dynamic crossover is
clearly seen at PB�0.6 GPa. Also for the pressure case the
dynamics for P� PB becomes “stronger,” showing the
Arrhenius behavior �nonsloped line� within the limit of the
experimental error.

The analysis presented in the inset in Fig. 4 seems to
support the conclusion that the critical-like dependence pre-
dicted by MCT �relation �15�� can be extended for the pres-
sure path �relation �17��. Noteworthy is the coincidence of
PB and PX in Fig. 3 as well as TB and TX in Fig. 4. The latter
coincidence is strongly suggested in Refs. �31,32,40�. The
parametrization of experimental data using VFT and PVFT
dependences with the above set of parameters is shown via
solid and dashed curves in Figs. 1 and 2.

IV. CONCLUSIONS

It has been shown that the derivative-based, VFT focused,
analysis with the linear function output of dielectric relax-
ation times reflects the evolution of the apparent activation
energy and the apparent activation volume for the tempera-
ture and pressure paths, respectively. The following dynami-
cal domains are characterized by different sets of VFT pa-
rameters. Particularly noteworthy is the shift from a “fragile”
�small DT and DP� to a “strong” �high values of DT and DP�
pattern on passing TB or PB on cooling or pressuring.
Dynamical domains are associated with two fictitious
ideal glass temperatures and/or pressures, strongly different
fragility strength coefficients, and VFT prefactors. The
set of “Stikel et al.” �9,10� plots in Refs.
�2–4,10,11,17,18,25–29,33,36,39,42� may indicate the uni-
versality of such behavior. It has also been suggested that the
derivative-based plots T2�Ha�T��−1 or �Va�P��−1 enable a
simple and reliable estimation of parameters describing the
critical-like MCT behavior. It is noteworthy that values of
exponents g for the temperature path �relation �14�� and g�for
the pressure path �relation �16�� are different. This nonuni-
versality of the power exponent in relations �14� and �16�
agrees with recent tests based on the high frequency light
scattering susceptibility in orthoterphenyl, where the pres-
sure and temperature shift of the frequency minimum was
analyzed �48�. Noteworthy is also the coincidence between
PB and PX as well as TB and TX values. The latter one is
strongly recommended in studies carried out up to now
��31,40� and references therein�. Values of relaxation times at
TB�230 K and PB�0.62 GPa are equal to the same
“magic,” universal relaxation time 10−7±1 s. This agrees with
the suggestion of Ref. �36� that the relaxation time at the
dynamic crossover may be independent of temperature and
pressure and thus can serve as the control variable of the
crossover.
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FIG. 3. The linearized plots of the temperature dependences of
the reduced apparent activation energy in supercooled diethyl
phthalate focused on the validity of the VFT relation �1�. The inset
shows results of analysis focused on testing the validity of the MCT
critical-like relation �Eqs. �14� and �15��. Values of fitted parameters
are given in the figure. The relaxation time at dynamic crossovers is
as follows: ��TB�=��TX��0.5
10−7 s.

FIG. 4. The linearized plot of the pressure dependence of the
reduced apparent activation volume in superpressed diethyl phtha-
late focused on the validity of the VFT-like relation �9�. The inset
shows results of the linearized, derivative focused on testing the
validity of the MCT critical-like relation �Eqs. �16� and �17��. Val-
ues of fitted parameters are given in the figure. Regarding relaxation
time at dynamic crossovers, ��PB��1.1
10−6 s and ��PX��9

10−7 s.
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